55 research outputs found

    The Minrank of Random Graphs

    Get PDF
    The minrank of a graph GG is the minimum rank of a matrix MM that can be obtained from the adjacency matrix of GG by switching some ones to zeros (i.e., deleting edges) and then setting all diagonal entries to one. This quantity is closely related to the fundamental information-theoretic problems of (linear) index coding (Bar-Yossef et al., FOCS'06), network coding and distributed storage, and to Valiant's approach for proving superlinear circuit lower bounds (Valiant, Boolean Function Complexity '92). We prove tight bounds on the minrank of random Erd\H{o}s-R\'enyi graphs G(n,p)G(n,p) for all regimes of p[0,1]p\in[0,1]. In particular, for any constant pp, we show that minrk(G)=Θ(n/logn)\mathsf{minrk}(G) = \Theta(n/\log n) with high probability, where GG is chosen from G(n,p)G(n,p). This bound gives a near quadratic improvement over the previous best lower bound of Ω(n)\Omega(\sqrt{n}) (Haviv and Langberg, ISIT'12), and partially settles an open problem raised by Lubetzky and Stav (FOCS '07). Our lower bound matches the well-known upper bound obtained by the "clique covering" solution, and settles the linear index coding problem for random graphs. Finally, our result suggests a new avenue of attack, via derandomization, on Valiant's approach for proving superlinear lower bounds for logarithmic-depth semilinear circuits

    String Matching: Communication, Circuits, and Learning

    Get PDF
    String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern. We study the complexity of this problem in three settings. - Communication complexity. For small k, we provide near-optimal upper and lower bounds on the communication complexity of string matching. For large k, our bounds leave open an exponential gap; we exhibit some evidence for the existence of a better protocol. - Circuit complexity. We present several upper and lower bounds on the size of circuits with threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our bounds are near-optimal for small k. - Learning. We consider the problem of learning a hidden pattern of length at most k relative to the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds on the VC dimension and sample complexity of this problem

    On the Quantitative Hardness of CVP

    Full text link
    \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} For odd integers p1p \geq 1 (and p=p = \infty), we show that the Closest Vector Problem in the p\ell_p norm (\CVP_p) over rank nn lattices cannot be solved in 2^{(1-\eps) n} time for any constant \eps > 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of p1p \geq 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of \CVP_2 (i.e., \CVP in the Euclidean norm), for which a 2n+o(n)2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p=p(n)2p = p(n) \neq 2 that approaches 22 as nn \to \infty. We also show a similar SETH-hardness result for \SVP_\infty; hardness of approximating \CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for \CVP_p and \CVPP_p for any 1p<1 \leq p < \infty under different assumptions

    Collapsing Superstring Conjecture

    Get PDF
    In the Shortest Common Superstring (SCS) problem, one is given a collection of strings, and needs to find a shortest string containing each of them as a substring. SCS admits 2 11/23-approximation in polynomial time (Mucha, SODA\u2713). While this algorithm and its analysis are technically involved, the 30 years old Greedy Conjecture claims that the trivial and efficient Greedy Algorithm gives a 2-approximation for SCS. We develop a graph-theoretic framework for studying approximation algorithms for SCS. The framework is reminiscent of the classical 2-approximation for Traveling Salesman: take two copies of an optimal solution, apply a trivial edge-collapsing procedure, and get an approximate solution. In this framework, we observe two surprising properties of SCS solutions, and we conjecture that they hold for all input instances. The first conjecture, that we call Collapsing Superstring conjecture, claims that there is an elementary way to transform any solution repeated twice into the same graph G. This conjecture would give an elementary 2-approximate algorithm for SCS. The second conjecture claims that not only the resulting graph G is the same for all solutions, but that G can be computed by an elementary greedy procedure called Greedy Hierarchical Algorithm. While the second conjecture clearly implies the first one, perhaps surprisingly we prove their equivalence. We support these equivalent conjectures by giving a proof for the special case where all input strings have length at most 3 (which until recently had been the only case where the Greedy Conjecture was proven). We also tested our conjectures on millions of instances of SCS. We prove that the standard Greedy Conjecture implies Greedy Hierarchical Conjecture, while the latter is sufficient for an efficient greedy 2-approximate approximation of SCS. Except for its (conjectured) good approximation ratio, the Greedy Hierarchical Algorithm provably finds a 3.5-approximation, and finds exact solutions for the special cases where we know polynomial time (not greedy) exact algorithms: (1) when the input strings form a spectrum of a string (2) when all input strings have length at most 2

    The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications

    Get PDF
    The orthogonality dimension of a graph G=(V,E)G=(V,E) over a field F\mathbb{F} is the smallest integer tt for which there exists an assignment of a vector uvFtu_v \in \mathbb{F}^t with uv,uv0\langle u_v,u_v \rangle \neq 0 to every vertex vVv \in V, such that uv,uv=0\langle u_v, u_{v'} \rangle = 0 whenever vv and vv' are adjacent vertices in GG. The study of the orthogonality dimension of graphs is motivated by various application in information theory and in theoretical computer science. The contribution of the present work is two-folded. First, we prove that there exists a constant cc such that for every sufficiently large integer tt, it is NP\mathsf{NP}-hard to decide whether the orthogonality dimension of an input graph over R\mathbb{R} is at most tt or at least 3t/2c3t/2-c. At the heart of the proof lies a geometric result, which might be of independent interest, on a generalization of the orthogonality dimension parameter for the family of Kneser graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976). Second, we study the smallest possible orthogonality dimension over finite fields of the complement of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit construction of triangle-free nn-vertex graphs whose complement has orthogonality dimension over the binary field at most n1δn^{1-\delta} for some constant δ>0\delta >0. Our results involve constructions from the family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower bounds. We use them to answer a couple of questions raised by Codenotti, Pudl\'{a}k, and Resta (Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture over every finite field.Comment: 19 page
    corecore